

The Anesthesia Machine

You are the master of the machine

 You are responsible for checking the machine prior to each case

<u>1</u>

The Anesthesia Machine (con't)

The primary cause of machine malfunction is failure to check
Never start without the

American Express items

What is the function of the anesthesia machine?

Functions of the Machine

Convert supply gases from high pressure to low pressure
Convert liquid agent to gas
Deliver in a controlled manner

Functions (con't)

 Provide positive pressure for ventilation

 Alert the provider to malfunction

 Prevent delivery of a hypoxic mixture

Components of the Machine

- Source gases
- Vaporizers
- ♦ Circuit
- Ventilator
- Scavenging system

Safety Standards

 1979 -- Standards set for all machines sold in the U.S.
 ANSI -- (American National Standards Institute)

-Released 1979 standards

Safety Standards (con't)

 ASTM -- (American Society for Testing and Materials)
 –Upgraded standards in 1988

The Generic Machine

- 2 sources of gas
 - -Pipeline 50 psig
 - -Tanks
 - »Oxygen: 2200 psig
 - »Nitrous oxide: 745 psig
 - »Both reduced to 45 psig upon
 - entering the machine

The Generic Machine (con't)

Fail safe system (OFPD)

 Stops flow if O₂ supply is lost

 Oxygen supply pressure alarm
 Second stage regulators

 Reduces pressure to 14 psig

The Generic Machine (con't)

- Flow control valves
 - -Regulate gas flow
 - -Separates high and low pressure circuits
- Common manifold

The Generic Machine (con't)

- Vaporizer
- Outlet check valve
- Oxygen flush valve

Gas Sources

- Oxygen analysis is <u>always</u> required
- Pipeline
 - -Enter at 50 psig
 - -Gauge is on source side
 - -DISS (Diameter Index Safety System)
 - »prevents gas swap

Gas Sources (con't)

Side tanks

- -Usually E cylinders
 - »Know pressure and volumes
- -Enter at 45 psig
- -Should be off unless in
 - emergency use
 - »Prevents silent emptying

Gas Sources (con't)

Pin index safety system
 Prevents tank swaps
 Pin positions
 Air 1-5
 Oxygen 2-5
 Nitrous oxide 3-5

Gas Sources (con't)

 Machine will use pipeline gas unless supply pressure drops below 45 psig

Fail Safe Devices

- Required by standards
 Stop flow of other gases if oxygen flow is interrupted
- Types
 - -Threshold
 - -Proportioning

Proportioning Systems

Prevent delivery of less than

25% oxygen

Either mechanical or

pneumatic interface

Ohmeda Link-25 Proportion System

 Chain connects O₂ and N₂O flow control valves

 As N₂O is increased, the chain will turn O₂ control to maintain at least 25% O2. Oxygen is increased

Ohmeda Link-25 Proportion System (con't)

 Maintains 3:1 ratio with combination of mechanical and pneumatic

Drager ORMC

Pneumatic N₂O interlock

Mobile shaft

- Slave control valve
- Pressure moves shaft and
 - opens or closes slave valve

Drager ORMC (con't)

- N₂O flow is <u>reduced</u> to maintain 25% O₂
- Electrical contact provides alarm
 - Functional only in the O₂ / N₂O mode (not in the "all gases" mode)

Limitations of Proportioning Systems

- Wrong gas supply
- Defective operation
- Leaks downstream
- Inert gas administration

Flow Meter Assembly

Controls and measures gas flow

- Thorpe tubes are tapered
- Indicator float is calibrated for specific tube
 - Density and viscosity differ
- Gas flows around float
 - Annular space

Flow Meter Standards

- Oxygen flow control knob
 - -Physically different
 - -Larger and projects further
 - -Different shape
- All knobs are color coded
- Knobs are protected

Flow Meter Standards (con't)

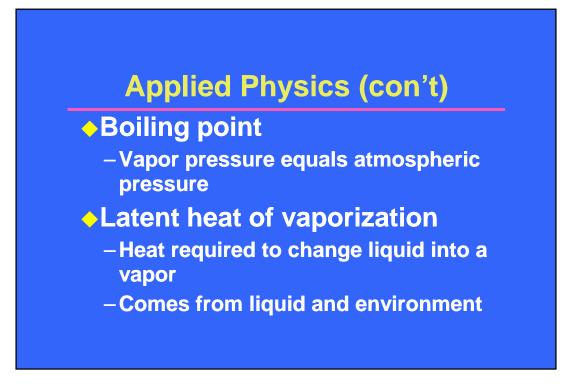
- Low flow tubes for O₂ and N₂O
- Color coded flow tubes
- Thorpe tubes protected
- Tubes are <u>not</u> interchangeable
 - -Float, tube and scale are single unit

Flow Meter Standards (con't)

 <u>Note</u>: Flow meters are located downstream from all safety devices except the oxygen analyzer.

Leaks

- Cracked tubes
- Faulty connections
- •May create hypoxic mixture
- Oxygen is <u>always</u> downstream
 - from other gases


Vaporizers

Convert liquid anesthetic into a volatile inhalation agent

- Based on laws of physics
- You must memorize the chemical properties of the volatile agents

Applied Physics

- Vapor pressure
 - -Dalton's law
 - -Based on characteristics of
 - agent
 - -Varies with temperature

Types of Vaporizers

Historic

- -Copper kettle
- -Vernitrol

Modern

- -Ohmeda Tec 4
- Drager Vapor 19.1

Ohmeda and Drager Characteristics

Variable bypass

Flow over

- Temperature compensated
- Agent specific
- Out of circuit

Copper Kettle and Vernitrol

- Measured flow
- Bubble through
- Non temperature compensated
- Multiple agent
- Out of circuit

Basic Design

- Gas enters vaporizer
- Flow is split
 - -Majority is bypassed
 - -Some enters vaporizing chamber
- Saturated gas leaves chamber
- Diluted by bypass gas
- Delivered to patient

Factors that Effect Output

Flow rate

- -Accurate at most flows
- Lower than dial setting at both extremes of flow

Temperature

- -Vapor pressure varies with temp
- -Accurate at 20 35° C

- Intermittent back pressure
 - -Retrograde flow
 - -Higher than dial setting
 - »especially at low flows and high ventilator pressures
- Carrier gas composition
 - -N₂O causes transient drop

Vaporizer Interlock System

Only 1 vaporizer can be turned on
Gas enters only the "on" vaporizer
Leak of trace gas is minimized
Vaporizers are locked into the circuit

Vapor Pressures:

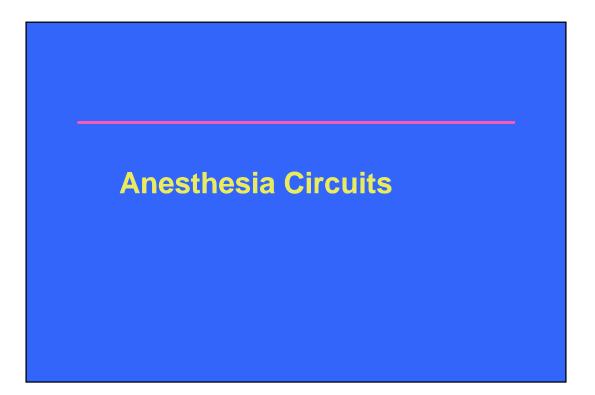
Isoflurane - 238 Enflurane - 175 Halothane - 241

Desflurane

Requires special vaporizer

- -Vapor pressure 664
- -Pressurized, heated chamber

»1550 mm / Hg prevents boiling


Vaporizer Hazards

Misfilling

- Tipping
- Dual vaporizers on
- ♦ Leaks
- Free standing vaporizers

Misfilling

- Vaporizers are calibrated according to the <u>vapor pressure</u> of the agent
- If you fill with an agent with a higher v.p. -- overdose
- If you fill with an agent with a lower v.p. -- underdose

Anesthesia Circuits

- Link machine to patient
- Eliminate carbon dioxide
- Mapleson classification
 - -Many circuits in use
 - Modified Mapleson still in use
 - Know the current applications of modified Mapleson circuits

Types of Circuits

Basic circle system

Mapleson Classification

Basic components needed for delivery of anesthetic gases

Delivery Systems

Connection to patient

Breathing tubing

- Onidirectional valves
- Breathing bag

Delivery Systems (Cont'd)

- Pop-off valve
- Carbon dioxide absorption

Bacterial filter

Circle System

 Allows rebreathing of anesthetic gases

- -lower FGF rates
- -Less pollution
- Requires CO₂ absorption
- Conserves heat and humidity

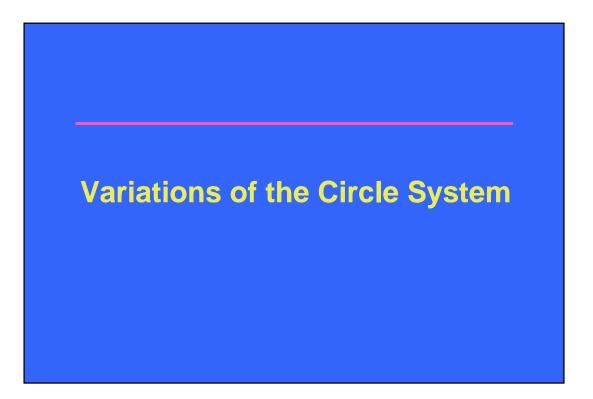
Advantages of Circle System

- Highly efficient
- Minimal dead space
- Conserves heat and moisture
- Minimal pollution
- <u>Disadvantage</u> many places to leak

Components of the Circle System

- Fresh gas source
- Unidirectional valves
- Inspiratory & expiratory tubing
- Y-piece connector

Circle System Components (Cont'd)


- APL valve
- Reservoir bag
- CO₂ absorber

Rules for Circle System

- Unidirectional valve must be between patient & bag on both sides
- FGF <u>cannot</u> enter between patient & expiratory valve

Rules for Circle System (Cont'd)

APL <u>cannot</u> be located
 between patient & inspiratory
 valve

Four Basic Circuits

Open

- Semi-open
- Semi-closed
- Closed

Open Systems

- Insufflation
 - -blow anesthetic gas over face
 - -no direct contact
 - -no rebreathing of gases
 - -ventilation cannot be controlled
 - -unknown amount delivered

Open Systems

Open drop anesthesia

- -gauze covered wire mask
- -anesthesia dripped
- -inhaled air passes through
 - gauze & picks up anesthetic

Open Systems (Cont'd)

Open drop anesthesia (cont'd)

- -concentration varies
- -re-breathing may occur
- -environmental pollution

Semi-open Systems

Breathing system which entrains room air
Self inflating resuscitator system

Semi-closed System

Gas enters from machine –part leaves via scavenger
Circle system
Bain system

Closed System

 Only enough gas enters to meet metabolic needs

- Scavenger is closed
- Closed circle system
- To-and-fro system

Closed System Anesthesia

- Technique not commonly used
- APL is closed and only enough O₂ is added to meet metabolic needs
- Anesthetic added based on square root of time
- Conserves anesthetic gas an eliminates pollution

The Scavenger System

- Releases excess pressure from the system
- Prevents operating room pollution
- Gases leave through APL
- May put too much negative pressure on the system

Systems Overview

Open System

No reservoirNo rebreathing

Semi-open System

Has reservoirNo rebreathing

Semi-closed System

Has reservoirpartial rebreathing

Closed System

Has reservoirComplete rebreathing

Mapleson Breathing Circuits

- Early pioneers developed their own delivery systems
 Mapleson classified types of
 - breathing devices

Mapleson Breathing Circuits (Cont'd)

Mapleson circuits fall into which type of system?
See Morgan p. 26, Table 3-1

Mapleson A

FGI near bag

Breathing tubing

Expiratory valve near mask

 Volume of breathing tube should be as great as the tidal volume

Mapleson A

Spontaneous ventilation

High FGF flushes tubing

between breaths

Mapleson A (Cont'd)

 Using "pop-off" enables controlled ventilation but also causes CO₂ rebreathing
 Current use?

Mapleson B

 Similar to A with FGI near expiratory valve

- System fills with FGF
 - -inhaled by patient

Mapleson B (Cont'd)

Exhaled gas forced out through expiratory valve
Current use?

Mapleson C

Similar to Mapleson B

- Shorter breathing tubing
 - -less dead space

Current use?

Mapleson D

- Long breathing tube
- FGI near mask
- Exhalation valve at distal end of breathing tubing
- •Current use?

Bain Breathing Circuit

Modified Mapleson D
Tube within a tube

FGF tube within larger tube

Mounts on anesthesia machine
APL valve
Connects to scavenger

Bain System

Advantages

- -compact, easy to handle
- -warming of inspired gases
- -partial rebreathing improves humidification
- -APL controls system pressure
- -ability of scavenging

Bain System Flow Rates

Spontaneous ventilation

 200-300 ml/kg/min

 Controlled ventilation

 infants <10kg
 l/m
 10 - 50 kg
 3.5 l/m
 60 kg
 70 ml/kg/min

Bain System

 Depends on fresh gas flow to flush out CO2

Spontaneous ventilation

- 200 300 ml / kg / min
- Controlled ventilation

70 ml / kg / min

Mapleson E

Exhalation tube is reservoir

- -no bag
- FGI near mask
- Current use?

Mapleson F

FGI near mask

- Breathing tubing/bag
- Expiratory valve at end of bag
- Current use?

Need To Know:

Basic components

 Letters and names of systems currently in use

Bain system

-flow rates

Carbon Dioxide Absorption

- Allows rebreathing of anesthetic gases
 Review formulas from Chem /
 - Physics
 - -Know for Board exam

CO₂ Absorption (con't)

- Soda lime
 - -94% calcium hydroxide
 - -5% sodium hydroxide
 - -1% potassium hydroxide
 - -silica to harden granules
 - -ethyl violet as an indicator

CO₂ Absorption (con't)

◆Baralime

- -80% calcium hydroxide
- -20% barium hydroxide
- -ethyl violet as an indicator

CO₂ Absorption (con't)

- PH is <u>extremely</u> high
- Granule size
 - -4 8 mesh
- Water is required for chemical reactions to occur

CO₂ Absorber Incompatibility

- Trichlorethylene
 - -dichloroacetylene
 - **»neurotoxin**
 - -Phosgene
 - »pulmonary irritant
- Sevoflurane
 - »degrades in absorber

Ventilators Classified by:

- Power source
 - -pneumatic
 - -electric
 - -both
- Drive mechanism
 - -double circuit
 - -driven by oxygen

Ventilator Classification (con't)

- Cycling mechanism
 - -time cycled
 - -pressure cycled
- Bellows classification
 - -ascending / descending
 - »related to expiratory phase
 - -Ascending is safer

Specific Ventilators

- Review reading assignment
- Do not memorize technical
 - data
- Note similarities and
 - differences

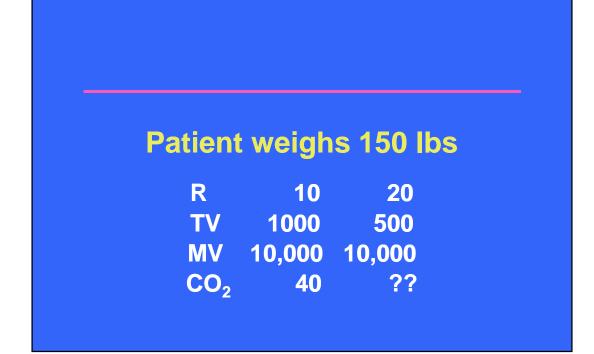
Ventilator Problems

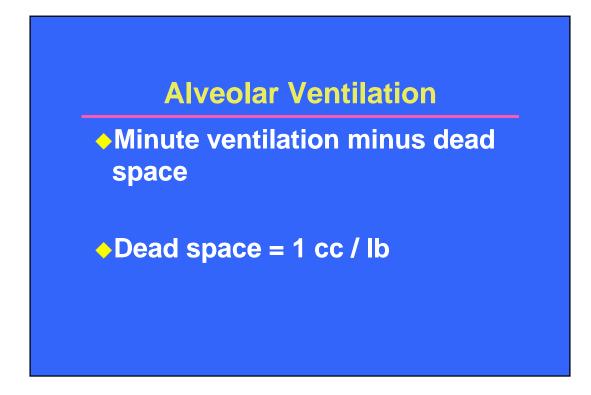
- Circuit disconnect
 - -Redundant alarms in place
 - -Check APL valve
- Occlusion
- Barotrauma

Ventilator Problems (con't)

- Leak in bellows assembly
- Mechanical problems
- Electrical problems

Setting the Ventilator (Things your mama didn't tell you)


Based on the principle that PaCO₂ is directly proportional to alveolar ventilation


$AV X CO_2 = AV X CO_2$

(what you have) (what you want)

AV = alveolar ventilation $CO_2 = carbon dioxide$ If you know 3, you can solve for the 4th

<u>49</u>

Ventilator Settings

If rate is constant, then dead space is constant
If you <u>do not</u> change the rate, V_t X CO₂ = X CO₂

You have R = 8, V_t = 650, ETCO₂ = 40. You want ETCO₂ = 33 and decide to leave the rate at 8. What new V_t is required to lower the ETCO₂ to 33?

$V_t X CO_2 = V_t X CO_2$

650 X 40 = ?? X 33 New TV = 788 Round off to 800 cc

Important concept

 PaCO2 is directly proportional to alveolar ventilation

 If dead space is constant, alveolar ventilation is directly proportional to tidal volume.

Humidification

Which takes more energy?

-Humidification of dry gas

-Heating cold gas

Humidifying a dry gas takes more energy than heating cold gas.

The Artificial Nose (Humidity Trap) Provides external heat and humidity More effective

Heated Humidifier

More dangerous

- -Larger circuit volume
- -Increased circuit compliance
- -Thermal injuries

The Anesthesia Machine Check

- Required standard of care
- You are responsible for the function of your machine
- Follow the checklist

Machine Check (con't)

- Document "machine checked"
- On't cut corners
 - -Full check to start each day
 - Abbreviated check between cases

American Express Items (Don't leave home without them)

Oxygen Positive Pressure Suction

<u>56</u>